For the cylindrical shaft shown, determine the maximum shearing stress caused by a torque of magnitude $T=800 \mathrm{~N} \cdot \mathrm{~m}$.

SOLUTION

$$
\begin{aligned}
\tau_{\max } & =\frac{T c}{J} ; \quad J=\frac{\pi}{2} c^{4} \\
\tau_{\max } & =\frac{2 T}{\pi c^{3}} \\
& =\frac{2(800 \mathrm{~N} \cdot \mathrm{~m})}{\pi(0.018 \mathrm{~m})^{3}} \\
& =87.328 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

$$
\tau_{\max }=87.3 \mathrm{MPa}
$$

SOLUTION

$$
\tau_{\max }=\frac{T c}{J}, \quad J=\frac{\pi}{2} c^{4}, \quad T=\frac{\pi}{2} \tau_{\max } c^{3}
$$

Shaft $A B$:

$$
\begin{aligned}
\tau_{\max } & =100 \mathrm{MPa}=100 \times 10^{6} \mathrm{~Pa} \\
c & =\frac{1}{2} d_{A B}=\frac{1}{2}(36)=18 \mathrm{~mm}=0.018 \mathrm{~m} \\
T_{A B} & =\frac{\pi}{2}\left(100 \times 10^{6}\right)(0.018)^{3}=916 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Shaft $B C$:

$$
\begin{aligned}
\tau_{\max } & =60 \mathrm{MPa}=60 \times 10^{6} \mathrm{~Pa} \\
c & =\frac{1}{2} d_{B C}=\frac{1}{2}(40)=20 \mathrm{~mm}=0.020 \mathrm{~m} \\
T_{B C} & =\frac{\pi}{2}\left(60 \times 10^{6}\right)(0.020)^{3}=1.754 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

The allowable torque is the smaller of $T_{A B}$ and $T_{B C}$.

$$
T=754 \mathrm{~N} \cdot \mathrm{~m}
$$

PROBLEM 3.17

The solid shaft shown is formed of a brass for which the allowable shearing stress is 55 MPa . Neglecting the effect of stress concentrations, determine the smallest diameters $d_{A B}$ and $d_{B C}$ for which the allowable shearing stress is not exceeded.

SOLUTION

$$
\begin{aligned}
& \tau_{\max }=55 \mathrm{MPa}=55 \times 10^{6} \mathrm{~Pa} \\
& \tau_{\max }=\frac{T c}{J}=\frac{2 T}{\pi c^{3}} \quad c=\sqrt[3]{\frac{2 T}{\pi \tau_{\max }}}
\end{aligned}
$$

Shaft $A B$:

$$
\begin{aligned}
T_{A B} & =1200-400=800 \mathrm{~N} \cdot \mathrm{~m} \\
c & =\sqrt[3]{\frac{(2)(800)}{\pi\left(55 \times 10^{6}\right)}}=21.00 \times 10^{-3} \mathrm{~m}=21.0 \mathrm{~m}
\end{aligned}
$$

$$
\text { minimum } d_{A B}=2 c=42.0 \mathrm{~mm}
$$

Shaft $B C$:

$$
\begin{aligned}
T_{B C} & =400 \mathrm{~N} \cdot \mathrm{~m} \\
c & =\sqrt[3]{\frac{(2)(400)}{\pi\left(55 \times 10^{6}\right)}}=16.667 \times 10^{-3} \mathrm{~m}=16.67 \mathrm{~mm}
\end{aligned}
$$

$$
\operatorname{minimum} d_{B C}=2 c=33.3 \mathrm{~mm}
$$

PROBLEM 3.21

A torque of magnitude $T=1000 \mathrm{~N} \cdot \mathrm{~m}$ is applied at D as shown. Knowing that the allowable shearing stress is 60 MPa in each shaft, determine the required diameter of (a) shaft $A B,(b)$ shaft $C D$.

SOLUTION

$$
\begin{aligned}
& T_{C D}=1000 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{A B}=\frac{r_{B}}{r_{C}} T_{C D}=\frac{100}{40}(1000)=2500 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

(a) Shaft $A B$:

$$
\begin{aligned}
\tau_{\mathrm{all}} & =60 \times 10^{6} \mathrm{~Pa} \\
\tau & =\frac{T c}{J}=\frac{2 T}{\pi c^{3}} \quad c^{3}=\frac{2 T}{\pi \tau}=\frac{(2)(2500)}{\pi\left(60 \times 10^{6}\right)}=26.526 \times 10^{-6} \mathrm{~m}^{3} \\
c & =29.82 \times 10^{-3}=29.82 \mathrm{~mm} \quad d=2 c=59.6 \mathrm{~mm}
\end{aligned}
$$

(b) Shaft $C D$:

$$
\begin{aligned}
\tau_{\mathrm{all}} & =60 \times 10^{6} \mathrm{~Pa} \\
\tau & =\frac{T c}{J}=\frac{2 T}{\pi c^{3}} \quad c^{3}=\frac{2 T}{\pi \tau}=\frac{(2)(1000)}{\pi\left(60 \times 10^{6}\right)}=10.610 \times 10^{-6} \mathrm{~m}^{3} \\
c & =21.97 \times 10^{-3} \mathrm{~m}=21.97 \mathrm{~mm} \quad d=2 c=43.9 \mathrm{~mm}
\end{aligned}
$$

PROBLEM 3.34

(a) For the aluminum pipe shown ($G=27 \mathrm{GPa}$), determine the torque \mathbf{T}_{0} causing an angle of twist of 2°. (b) Determine the angle of twist if the same torque \mathbf{T}_{0} is applied to a solid cylindrical shaft of the same length and cross-sectional area.

SOLUTION

(a)

$$
\begin{aligned}
c_{o} & =50 \mathrm{~mm}=0.050 \mathrm{~m}, \quad c_{i}=40 \mathrm{~mm}=0.040 \mathrm{~m} \\
J & =\frac{\pi}{2}\left(c_{o}^{4}-c_{i}^{4}\right)=\frac{\pi}{2}\left(0.050^{4}-0.040^{4}\right) \\
& =5.7962 \times 10^{-6} \mathrm{~m}^{4} \\
\varphi & =2^{\circ}=34.907 \times 10^{-3} \mathrm{rad} \quad L=2.5 \mathrm{~m} \\
\varphi=\frac{T L}{G J} \quad G & =27 \times 10^{9} \mathrm{~Pa} \\
T_{0} & =\frac{G J \varphi}{L}=\frac{\left(27 \times 10^{9}\right)\left(5.7962 \times 10^{-6}\right)\left(34.907 \times 10^{-3}\right)}{2.5} \\
& =2.1851 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
T_{0}=2.19 \mathrm{kN} \cdot \mathrm{~m}
$$

Area of pipe: $\quad A=\pi\left(c_{o}^{2}-c_{i}^{2}\right)=\pi\left(0.050^{2}-0.040^{2}\right)=2.8274 \mathrm{~m}^{2}$
(b) Radius of solid of same area: $\quad c_{s}=\sqrt{\frac{A}{\pi}}=0.030 \mathrm{~m}$

$$
\begin{aligned}
& J_{s}=\frac{\pi}{2} c_{s}^{4}=\frac{\pi}{2}(0.030)^{4}=1.27235 \times 10^{-6} \mathrm{~m}^{2} \\
& \varphi_{s}=\frac{T_{0} L}{G J}=\frac{\left(2.1851 \times 10^{3}\right)(2.5)}{\left(27 \times 10^{9}\right)\left(1.27235 \times 10^{-6}\right)}=0.15902 \mathrm{rad}
\end{aligned}
$$

$$
\varphi_{s}=9.11^{\circ}
$$

PROBLEM 3.38

The aluminum $\operatorname{rod} A B(G=27 \mathrm{GPa})$ is bonded to the brass $\operatorname{rod} B D(G=39 \mathrm{GPa})$. Knowing that portion $C D$ of the brass rod is hollow and has an inner diameter of 40 mm , determine the angle of twist at A.

SOLUTION

$\underline{\operatorname{Rod} A B}:$

$$
\begin{aligned}
G & =27 \times 10^{9} \mathrm{~Pa}, \quad L=0.400 \mathrm{~m} \\
T & =800 \mathrm{~N} \cdot \mathrm{~m} \quad c=\frac{1}{2} d=0.018 \mathrm{~m} \\
J & =\frac{\pi}{2} c^{4}=\frac{\pi}{2}(0.018)^{4}=164.896 \times 10^{-9} \mathrm{~m} \\
\varphi_{A / B} & =\frac{T L}{G J}=\frac{(800)(0.400)}{\left(27 \times 10^{9}\right)\left(164.896 \times 10^{-9}\right)}=71.875 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

$\underline{\text { Part } B C}: \quad G=39 \times 10^{9} \mathrm{~Pa} \quad L=0.375 \mathrm{~m}, \quad c=\frac{1}{2} d=0.030 \mathrm{~m}$

$$
\begin{aligned}
T & =800+1600=2400 \mathrm{~N} \cdot \mathrm{~m}, \quad J=\frac{\pi}{2} c^{4}=\frac{\pi}{2}(0.030)^{4}=1.27234 \times 10^{-6} \mathrm{~m}^{4} \\
\varphi_{B / C} & =\frac{T L}{G J}=\frac{(2400)(0.375)}{\left(39 \times 10^{9}\right)\left(1.27234 \times 10^{-6}\right)}=18.137 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

$\underline{\text { Part } C D}$:

$$
\begin{aligned}
c_{1} & =\frac{1}{2} d_{1}=0.020 \mathrm{~m} \\
c_{2} & =\frac{1}{2} d_{2}=0.030 \mathrm{~m}, \quad L=0.250 \mathrm{~m} \\
J & =\frac{\pi}{2}\left(c_{2}^{4}-c_{1}^{4}\right)=\frac{\pi}{2}\left(0.030^{4}-0.020^{4}\right)=1.02102 \times 10^{-6} \mathrm{~m}^{4} \\
\varphi_{C / D} & =\frac{T L}{G J}=\frac{(2400)(0.250)}{\left(39 \times 10^{9}\right)\left(1.02102 \times 10^{-6}\right)}=15.068 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

Angle of twist at A.

$$
\begin{aligned}
\varphi_{A} & =\varphi_{A / B}+\varphi_{B / C}+\varphi_{C / D} \\
& =105.080 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

$$
\varphi_{A}=6.02^{\circ}
$$

PROBLEM 3.41

Two shafts, each of $22-\mathrm{mm}$ diameter are connected by the gears shown. Knowing that $G=77 \mathrm{GPa}$ and that the shaft at F is fixed, determine the angle through which end A rotates when a $130 \mathrm{~N} \cdot \mathrm{~m}$ torque is applied at A.

SOLUTION

Calculation of torques.
Circumferential contact force between gears B and $E . \quad F=\frac{T_{A B}}{r_{B}}=\frac{T_{E F}}{r_{E}} \quad T_{E F}=\frac{r_{E}}{r_{B}} T_{A B}$

$$
\begin{aligned}
& T_{A B}=130 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{E F}=\frac{150}{110}(130)=177.3 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Twist in shaft $F E$.

$$
\begin{aligned}
L & =300 \mathrm{~mm}, \quad c=\frac{1}{2} d=11 \mathrm{~mm}, \quad G=776 \mathrm{~Pa} \\
J & =\frac{\pi}{2} c^{4}=\frac{\pi}{2}(0.011)^{4}=23 \times 10^{-9} \mathrm{~m}^{4} \\
\varphi_{E / F} & =\frac{T L}{G J}=\frac{(177.3)(0.3)}{\left(77 \times 10^{9}\right)\left(23 \times 10^{-9}\right)}=0.03 \mathrm{rad}
\end{aligned}
$$

Rotation at E.

$$
\varphi_{E}=\varphi_{E / F}=0.03 \mathrm{rad}
$$

Tangential displacement at gear circle

$$
\delta=r_{E} \varphi_{E}=r_{B} \varphi_{B}
$$

Rotation at B.

$$
\varphi_{B}=\frac{r_{E}}{r_{B}} \varphi_{E}=\frac{15}{11}(0.03)=0.0409 \mathrm{rad}
$$

Twist in shaft $B A$.

$$
L=0.35 \mathrm{~m} \quad J=23 \times 10^{-9} \mathrm{~m}^{4}
$$

$$
\varphi_{A / B}=\frac{T L}{G J}=\frac{(130)(0.35)}{\left(77 \times 10^{9}\right)\left(23 \times 10^{-9}\right)}=0.0257 \mathrm{rad}
$$

Rotation at A.

$$
\varphi_{A}=\varphi_{B}+\varphi_{A / B}=0.0666 \mathrm{rad}
$$

$$
\varphi_{A}=3.82^{\circ}
$$

Problem 3.51

3.51 The solid cylinders $A B$ and $B C$ are bonded together at B and are attached to fixed supports at A and C. Knowing that the modulus of rigidity is 26 GPa for aluminum and 39 GPa for brass, determine the maximum shearing stress (a) in cylinder $A B,(b)$ in cylinder $B C$.

The torques in cylinders $A B$ and $B C$ are statically indeterminate. Match the rotation φ_{B} for each cylinder.

Cylinder AB
$c=\frac{1}{2} d=0.019 \mathrm{~m}$
$L=0.3 \mathrm{~m}$

$$
\begin{aligned}
& J=\frac{\pi}{2} c^{4}=204.7 \times 10^{-9} \mathrm{~m}^{4} \\
& \varphi_{B}=\frac{T_{A B} L}{G J}=\frac{T_{A B}(0.3)}{\left(26 \times 10^{9}\right)\left(204.7 \times 10^{-9}\right)}=56.37 \times 10^{-6} T_{A B}
\end{aligned}
$$

Cylinder $B C$: $\quad c=\frac{1}{2} d=0.025 \mathrm{~m} \quad L=0.45 \mathrm{~m}$

$$
\begin{aligned}
& J=\frac{\pi}{2} C^{4}=\frac{\pi}{2}(0.025)^{4}=613.6 \times 10^{-9} \mathrm{~m}^{4} \\
& \varphi_{B}=\frac{T_{B C} L}{G J}=\frac{T_{B C}(0.45)}{\left(39 \times 10^{9}\right)\left(613.6 \times 10^{-9}\right)}=18.8 \times 10^{-6} T_{B C}
\end{aligned}
$$

Matching expressions for P_{B}. $\quad 56.37 \times 10^{-6} T_{A B}=18.8 \times 10^{-6} T_{B C}$

$$
\begin{equation*}
T_{B C}=2.9984 T_{A B} \tag{1}
\end{equation*}
$$

Equilibrium of connection at $B: \quad T_{A_{B}}+T_{B C}-T=0 \quad T=1200 \mathrm{Nm}$

$$
\begin{equation*}
T_{A B}+T_{B C}=1.2 \times 10^{3} \tag{2}
\end{equation*}
$$

Substituting (1) into (2),

$$
3.9984 T_{A B}=1.2 \times 10^{3}
$$

$$
T_{A B}=300 \mathrm{Nm} \quad T_{B C}=900 \mathrm{Nm}
$$

(a) Maximum stress in cylinder AB.

$$
\tau_{A B}=\frac{T_{A B} C}{J}=\frac{(300)(0.019)}{204.7 \times 10^{-9}}=27.85 \mathrm{MPa} \quad \tau_{A B}=27.9 \mathrm{MPa}
$$

(b) Maximum stress in cylinder BC.

$$
\tau_{B C}=\frac{T_{B C} C}{J}=\frac{(900)(0.025)}{613.6 \times 10^{-9}}=36.67 \mathrm{MPa} \quad \tau_{B C}=36.7 \mathrm{MPa}
$$

PROBLEM 3.53

The composite shaft shown consists of a 5 mm thick brass jacket ($G=39 \mathrm{GPa}$) bonded to a 30 mm diameter steel core ($G=77 \mathrm{GPa}$). Knowing that the shaft is subjected to $565 \mathrm{~N} \cdot \mathrm{~m}$ torques, determine (a) the maximum shearing stress in the brass jacket, (b) the maximum shearing stress in the steel core, (c) the angle of twist of end B relative to end A.

SOLUTION

Steel core:

$$
\begin{aligned}
c_{1} & =\frac{1}{2} d=15 \mathrm{~mm} \\
J_{1} & =\frac{\pi}{2} c_{1}^{4}=\frac{\pi}{2}(0.015)^{4}=79.52 \times 10^{-9} \mathrm{~m}^{4} \\
G_{1} J_{1} & =\left(77 \times 10^{9}\right)\left(79.52 \times 10^{-9}\right)=6123.04 \mathrm{~N} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Torque carried by steel core

$$
T_{1}=G_{1} J_{1} \frac{\varphi}{L}
$$

Brass jacket:

$$
c_{2}=c_{1}+t=15 \mathrm{~mm}+5 \mathrm{~mm}=20 \mathrm{~mm}
$$

$$
J_{2}=\frac{\pi}{2}\left(c_{2}^{4}-c_{1}^{4}\right)=\frac{\pi}{2}\left(0.02^{4}-0.015^{4}\right)=0.1718 \times 10^{-6} \mathrm{~m}^{4}
$$

$$
G_{2} J_{2}=\left(39 \times 10^{9}\right)\left(0.1718 \times 10^{-6}\right)=6700.4 \mathrm{~N} \cdot \mathrm{~m}^{2}
$$

Torque carried by brass jacket

$$
T_{2}=G_{2} J_{2} \frac{\varphi}{L}
$$

Total torque

$$
\begin{aligned}
T & =T_{1}+T_{2}=\left(G_{1} J_{1}+G_{2} J_{2}\right) \frac{\varphi}{L} \\
\frac{\varphi}{L} & =\frac{T}{G_{1} J_{1}+G_{2} J_{2}}=\frac{565}{6123.04+6700.4}=0.044 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

(a) Maximum shearing stress in brass jacket

$$
\begin{aligned}
\tau_{\max } & =G_{2} \gamma_{\max }=G_{2} C_{2} \frac{\varphi}{L}=\left(39 \times 10^{9}\right)(0.02)(0.044) \\
& =34.37 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

34.37 MPa
(b) Maximum shearing stress in steel core

$$
\begin{aligned}
\tau_{\max } & =G_{1} \gamma_{\max }=G_{1} C_{1} \frac{\varphi}{L}=\left(77 \times 10^{9}\right)(0.015)(0.044) \\
& =50.82 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(c) Angle of twist $(L=1.8 \mathrm{~m})$

$$
\begin{aligned}
\varphi & =L \frac{\varphi}{L}=(1.8)(0.044)=79.2 \times 10^{-3} \mathrm{rad} \\
& =4.53^{\circ}
\end{aligned}
$$

PROBLEM 3.68

While a steel shaft of the cross section shown rotates at 120 rpm , a stroboscopic measurement indicates that the angle of twist is 2° in a 4-m length. Using $G=77.2 \mathrm{GPa}$, determine the power being transmitted.

SOLUTION

Twist angle: $\quad \varphi=2^{\circ}=34.907 \times 10^{-3} \mathrm{rad}$
$c_{1}=\frac{1}{2} d_{1}=0.015 \mathrm{~m}$
$c_{2}=\frac{1}{2} d_{2}=0.0375 \mathrm{~m}$
$J=\frac{\pi}{2}\left(c_{2}^{4}-c_{1}^{4}\right)=\frac{\pi}{2}\left(0.0375^{4}-0.015^{4}\right)$
$J=3.0268 \times 10^{-6} \mathrm{~m}^{4}, \quad L=4 \mathrm{~m}$
$\varphi=\frac{T L}{G J} \quad T=\frac{G J \varphi}{L}=\frac{\left(77.2 \times 10^{9}\right)\left(3.0268 \times 10^{-6}\right)\left(34.907 \times 10^{-3}\right)}{4}$
$T=2.0392 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$
$f=120 \mathrm{rpm}=\frac{120}{60} \mathrm{~Hz}=2 \mathrm{~Hz}$
$P=(2 \pi f) T=2 \pi(2)\left(2.0392 \times 10^{3}\right)=25.6 \times 10^{3} \mathrm{~W}=25.6 \mathrm{~kW}$

SOLUTION

$$
\begin{aligned}
\tau & =\frac{K T c}{J}=\frac{2 K T}{\pi c^{3}} \quad T=\frac{\pi c^{3} \tau}{2 K} \\
d & =30 \mathrm{~mm} \quad c=\frac{1}{2} d=15 \mathrm{~mm}=15 \times 10^{-3} \mathrm{~m} \\
D & =60 \mathrm{~mm}, \quad r=8 \mathrm{~mm} \\
\frac{D}{d} & =\frac{60}{30}=2, \quad \frac{r}{d}=\frac{8}{30}=0.26667
\end{aligned}
$$

From Fig. 3.32,

$$
K=1.18
$$

Allowable torque.

$$
T=\frac{\pi\left(15 \times 10^{-3}\right)^{3}\left(45 \times 10^{6}\right)}{(2)(1.18)}=202.17 \mathrm{~N} \cdot \mathrm{~m}
$$

Maximum power.

$$
P=2 \pi f T=(2 \pi)(50)(202.17)=63.5 \times 10^{3} \mathrm{~W}
$$

$$
P=63.5 \mathrm{~kW}
$$

